
Macintosh Technical Notes

New Technical Notes

Developer Support

®Macintosh

A/UX System Calls From Macintosh Software
Platforms & Tools M.PT.AUXSysCalls

Revised by: Anathan Srinivasan & Kent Sandvik January 1991
Written by: Rob M. Smith, B. W. Hendrickson & Dave Radcliffe August 1990

This Technical Note discusses how to make A/UX system calls from applications developed
in the Macintosh environment. This is useful to anyone porting an existing Macintosh driver
or application to work on A/UX as well.

Changes since August 1990: Added information about how to make use of fork() system
calls under MultiFinder, as well as how various A/UX system calls behave under the
MultiFinder emulation mode.

Introduction

A/UX 2.0 now runs a broad range of Macintosh applications. The A/UX Toolbox allows
most code developed for the Macintosh to run unmodified under A/UX. One exception is
Macintosh device drivers. Many developers are interested in also making their Macintosh
peripherals available to A/UX customers. If the peripheral requires a custom driver that
accesses hardware, the driver needs to be modified to run under A/UX.

Split Decision

The A/UX Toolbox runs in “user” space in A/UX. This is a virtual, protected memory space
that shares the system resources with all other processes running in “user” space. These
processes are not allowed to access hardware directly. Instead, they must make a request to
the A/UX kernel through a mechanism called a “system call” to deal with the hardware.
The kernel, which runs in “system space,” then returns data, status, etc. back to the caller.
The system call is a well-defined interface that gives Unix® systems some degree of application portability.

Since any custom driver code must maintain the Macintosh interface at the Toolbox and application level, and Toolbox code cannot touch the
hardware, you must split your driver into two pieces. The high-level Macintosh interface portion stays in user space, and the low-level hardware
dependent, Unix-style interface becomes a Unix device driver in the kernel. So how do these two pieces communicate? They have to talk to
each other through the Unix system call interface.

The code comprising the kernel portion of your driver must be adapted to do things in a “Unix way,” such as providing the standard routine
interface required of all Unix drivers, be multithreaded and reentrant, and not “hog” CPU time by doing “busy waits.” This Note does not cover
these issues, but the A/UX Device Drivers Kit (available through APDA) has

Developer Technical Support January 1991

Macintosh Technical Notes

example code and documentation about the topic. There are also some good books available on writing Unix drivers.

Is This A/UX or What?

If you want your code to work in either environment without change, you first need to determine if you are under A/UX at run time. The best
way to do this is with the _Gestalt trap using the selector gestaltAUXVersion to determine if A/UX is the underlying operating system.
Shown below is a function which returns 0 if A/UX is not present, otherwise returns the major A/UX version number (1, 2, etc.). This code
relies on _Gestalt glue code available in MPW 3.2 and later.

/*
* getAUXVersion.c
*
* Copyright © 1990 Apple Computer, Inc.
*
* This file contains routines to test if an application is running
* on A/UX. If the Gestalt trap is available, it uses that, otherwise
* it falls back to HWCfgFlags, which will work on all A/UX systems.
*/
#include <Types.h>
#include <GestaltEqu.h>

#define HWCfgFlags 0xB22 /* Low memory global used to check if A/UX is running */

/*
* getAUXVersion -- Checks for the presence of A/UX by whatever means is appropriate.
* Returns the major version number of A/UX (i.e. 0 if A/UX is not present, 1 for
* any 1.x.x version 2 for any 2.x version, etc.
*
* This code should work for all past, present and future A/UX systems.
*/
short getAUXVersion ()
{
 long auxversion;
 short err;
 short *flagptr;

 /*
 * This code assumes the Gestalt glue checks for the presence of the _Gestalt
 * trap and does something intelligent if the trap is unavailable, i.e.
 * return unknown selector.
 */
 auxversion = 0;
 err = Gestalt (gestaltAUXVersion, &auxversion);
 /*
 * If gestaltUnknownErr or gestaltUndefSelectorErr was returned, then either
 * we weren't running on A/UX, or the _Gestalt trap is unavailable so use
 * HWCfgFlags instead.
 * All other errors are ignored (implies A/UX not present).
 */
 if (err == gestaltUnknownErr || err == gestaltUndefSelectorErr) {
 flagptr = (short *) HWCfgFlags; /* Use HWCfgFlags */
 if (*flagptr & (1 << 9))
 auxversion = 0x100; /* Do Have A/UX, so assume version 1.x.x */
 }
 /*
 * Now right shift auxversion by 8 bits to get major version number
 */
 auxversion >>= 8;
 return ((short) auxversion);

Developer Technical Support January 1991

Macintosh Technical Notes

}

A/UX Code, Under MPW?

The main system calls used to access kernel driver routines are open(), close(),
read(), write(), and ioctl(). Of use to applications is the routine creat() which
is included here as well. The A/UX system call mechanism is a trap #0 with the system
call selector code in register D0. The arguments are on the stack in the normal C calling
convention, last argument pushed first.

Note that different trap calls under A/UX have different procedures concerning the use of
registers
and stack frames.In this Tech Note we are not trying to document each possible case, so we
limit the examples to show how the registers and stack frame are used| with the
open(),close(), read(), write(), fork() and ioctl() A/UX system calls. In
the case of other A/UX system calls you have to disassemble code compiled under the A/UX
environment in order to find out how the parameters are passed, and how the stack frames
are set.

Since MPW does not contain any A/UX libraries and doesn’t know about Unix system calls,
you need to use some assembly-language glue code around the trap. Following is glue code
for the common A/UX routines listed above. You can extend your A/UX system call library
by adding additional routines with additional system call selectors. This glue code relies on
the similarity between A/UX C calling conventions and MPW C calling conventions, as well
as the similarity in the sizes of parameters (int variables are four bytes in both systems).
When these routines are entered the stack frame is already correctly set up for the trap
#0; if you are using other languages or development systems, you may need to extend the
glue to rearrange parameters on the stack to match A/UX C calling conventions.

The error code from the call is returned in D0. In the Unix environment, this error code is
normally placed in the errno global variable and D0 is set to -1 before return to the caller.
Since global variables are very bad for Macintosh device drivers, this glue code relies on a
special A/UX trap called _AUXDispatch which can return a pointer to an A/UX errno
global variable. The C functions SetAUXErrno() and GetAUXErrno() are used to set
and retrieve this value. The _AUXDispatch trap is defined in an A/UX include file
/usr/include/mac/aux.h and you need this file to compile the C code. For more information
about the AUXDispatch trap, consult the A/UX Toolbox: Macintosh ROM Interface manual.
Lastly, all function names have been preceded by the prefix “AUX” to distinguish them
from their MPW C library counterparts (e.g., the A/UX read() function is named
AUXRead() here).

; AUXIO.a -- Glue for A/UX I/O system calls
;
; Copyright © 1990 Apple Computer, Inc.
; All rights reserved.
;
; This module contains C callable routines to execute A/UX system (trap 0)
; calls. The parameters to these routines is exactly as they are described
Developer Technical Support January 1991

Macintosh Technical Notes

; in the A/UX man(2) documentation. This means all char * parameters are
; NULL terminated C strings, not Pascal strings. They all presume that A/UX
; is in fact running. Certain death will result otherwise.

 CASE ON ; For C
 INCLUDE 'SysEqu.a'
 IMPORT SetAUXErrno
;

Developer Technical Support January 1991

Macintosh Technical Notes

; Here are all the routines and their C calling conventions:
; long AUXCreat (char *path, long mode);
 EXPORT AUXCreat
; long AUXOpen (char *path, long oflag, long mode);
 EXPORT AUXOpen
; long AUXClose (int fildes);
 EXPORT AUXClose
; long AUXRead (long fildes, char *buf, long nbytes)
 EXPORT AUXRead
; long AUXWrite (long fildes, char *buf, long nbytes)
 EXPORT AUXWrite
; long AUXIoctl (long fildes, long request, long arg)
 EXPORT AUXIoctl

; Some local entry points
 ENTRY auxerr
 ENTRY auxcommon
 ENTRY auxexit

AUXCreat PROC
 move.l #$8,D0 ; creat function selector
 bra.b auxcommon ; Join common code
AUXOpen PROC EXPORT
 move.l #$5,D0 ; open function selector
 bra.b auxcommon ; Join common code
AUXClose PROC EXPORT
 move.l #$6,D0 ; close function selector
 bra.b auxcommon ; Join common code
AUXRead PROC EXPORT
 move.l #$3,D0 ; read function selector
 bra.b auxcommon ; Join common code
AUXWrite PROC EXPORT
 move.l #$4,D0 ; write function selector
 bra.b auxcommon ; Join common code
AUXIoctl PROC EXPORT
 move.l #$36,D0 ; ioctl function selector
 bra.b auxcommon ; Join common code

; Trivia of the month. The flow of the code is a little weird
; here because of a strange interaction between the assembler
; and the linker. Logically, auxcommon should go here, but what
; happens in that case is the assembler generates a byte branch
; instruction for the previous instruction, but then the linker
; cheerfully fills in the byte offset, which if auxcommon were
; the next instruction would be zero. At runtime, this causes
; the bra.b to get interpreted as a bra.w and of course the code
; flies off into never-never land. So we stick in some convenient
; intervening code to ensure the offset is never zero.
auxerr PROC ENTRY
 move.l D0,-(SP) ; Push error code
 jsr SetAUXErrno ; Set errno
 add.w #$4,SP ; Remove parameter
 move.l #$FFFFFFFF,D0 ; Set -1 for return value
 bra.b auxexit ; Outta here

auxcommon PROC ENTRY
 trap #$0 ; trap 0
 bcc.b auxexit ; CC, no error
 bra.b auxerr ; Do common error handling

auxexit PROC ENTRY
 rts
 ENDPROC

 END

Developer Technical Support January 1991

Macintosh Technical Notes

The second argument to the AUXIoctl call needs some special attention. The A/UX header file /usr/include/sys/ioctl.h describes the format of
request. These four bytes hold several fields describing the data format. Normally, macros defined in the ioctl.h header file take care of
packing these fields. Make sure you use the same format when you construct your request argument. Just use the example commands in
the /usr/include/sys/*ioctl.h files as a reference.

Following are the C functions to properly get and set the A/UX errno global variable:

/*
* AUXErrno.c
*
* Copyright © 1990 Apple Computer, Inc.
* All rights reserved.
*
* This file contains routines to properly get and set the standard Unix global
* errno from within an Macintosh application. It uses the AUXDispatch trap
* to get a pointer to the address to be set.
*/
#include <aux.h>

void SetAUXErrno (err)
long err;
{
 long *errnoptr;

 if (!getAUXVersion ())
 return; /* No A/UX, do nothing */

 errnoptr = 0;
 AUXDispatch (AUX_GET_ERRNO, (char *) &errnoptr);
 /*
 * If errnoptr is still NIL, AUXDispatch failed so do nothing
 */
 if (errnoptr)
 *errnoptr = err;
 return;
}

long GetAUXErrno ()
{
 long *errnoptr;

 if (!getAUXVersion ())
 return (0); /* No A/UX, return noerror */
 errnoptr = 0;
 AUXDispatch (AUX_GET_ERRNO, (char *) &errnoptr);
 /*
 * If errnoptr is still NIL, we're not under A/UX, or AUXDispatch failed
 * so do nothing
 */
 if (errnoptr)
 return (*errnoptr);
 else
 return (0);
}

Developer Technical Support January 1991

Macintosh Technical Notes

Use of the fork() call under A/UX MultiFinder emulation

The following advice concerns the use of the A/UX fork() system call under the
MultiFinder emulation mode. Under A/UX the kernel does not separate the data region of
the parent process for the child after a fork() call. If we do a simple fork we have
suddenly two MultiFinder processes running, and they both will share the same resources.
The MultiFinder memory space is set up as shared memory, and since the child in UNIX
inherits all shared memory segments from the parent across the fork, both the parent process
and the child process will be using the same stack. This will lead to chaos if the child pushes
something to the stack while the parent removes the data, or vice versa. The child should
have a separate stack until we have done an exec(), then the child process has it’s own
memory world.

So what we need to do is to set up a separate data area for the child's process stack use. The
child process will get its own data area by allocating enough stack space by the parent
before the fork(), and passing this space to the fork() system call using a special
fork() call, which is explained later.

The fork() system call copies the current stack frame of the parent onto the new stack
space, resets the stack pointer to point to the new stack in the child, and then issues the trap
to jump into the Unix kernel to continue to set up the new process structures. This enables
the child to access information from the stack in the same manner as any other process.
Details to keep in mind while using this mechanism are :

a) Allocate memory for the stack which is guaranteed not to be freed until after the child
process has completed its exec.

b) Pass the address of the high memory end of the allocated memory for the stack to
fork(), not the low memory address.

c) The address to be passed as the caller-environment argument is computed differently
depending on whether the calling routine has a Pascal or a C stack frame. The examples
given later show how the calculation is done.

d) The calling routine needs to be very careful about what the child does before exec() or
exit(). Pointers and structures accessed via the stack will point to the parent's copy, since
only the local/current frame has been copied.

In particular allocation of large arrays should be done only after ensuring that the space
allocated for the child stack is sufficiently large to copy the entire stack frame. This is
important because arrays could be allocated on the stack, and there could exist array sizes
which cause the current stack frame size to exceed that of the allocated child stack space.
This will result in only part of the current stack frame being copied over onto the child. In
such cases seemingly normal accesses from the child will end up being in the wrong area
and cause strange behavior (the screen is locked up, bus errors are frequent etc.).
Developer Technical Support January 1991

Macintosh Technical Notes

Using malloc() and free() to allocated space for such large buffers on the heap will
eliminate this problem. However one needs to be aware that though the space is allocated on
the heap, the space is accessed via a pointer which is on the current stack frame. This means
that accesses from the child to the space in question will result in accesses to the parent's
copy.

e) The parent must clean up of the allocated space for the interim stack for the child after the
child has exit:ed.

Developer Technical Support January 1991

Macintosh Technical Notes

The following picture illustrates how the stack parameter passing is done with a Pascal stack
and a C stack:

High Memory

Low Memory

fork
return address

&Child stack

X Y

return address
s
r

return value

system X-n-8

X-n-4
X-n
X

fork
return address

&Child stack

X Y

return address
s
r

fake

system X-12

X-8
X-4
X

Pascal Call Stack C Call Stack

n = sizeof(Ret. value)
X is determined thus; X is determined thus:
X = &r + sizeof(r) + X = &fake
sizeof(Ret. value)

The design issue of returning to the caller from fork() (as opposed to providing a fork()-exec() combination which does
not return from the fork but goes ahead and execs the required program as well) should be favored after looking into the problem
carefully. Providing a separate fork() has advantages in the form of letting the user set up communication channels between
the parent and child before exec(), or allowing the user to set up the appropriate environment before exec(). The problems has
to do with the possibility of the not-so-wary programmer using the feature improperly and leaving two Macintosh environments
running simultaneously, which will lead to chaos very quickly. Thus use of fork() from within an application must be done
with extreme caution.

Given below is an example of the use of AUXFork(), a special fork() implementation. This example also shows how to set
up the A/UX environment.

#define STACKBYTES 2048 /* size in bytes */
#define STACKSIZE STACKBYTES/sizeof(long)
unsigned long *childstack;

pascal long AUXDispatch(selector,p)
short selector;
char *p;
extern 0xABF9;

Developer Technical Support January 1991

Macintosh Technical Notes

#define AUX_GET_ENVIRON 11 /* get pointer to environ */

char **auxenviron;
extern int AUXFork(), AUXExecl(),AUXWait(), AUX_exit();

int system(s,fake)
char *s;
int fake;
{

int status, pid, w;
register int (*istat)(), (*qstat)(), (*cstat)();
int GetAUXErrno();
long aux_errno;

childstack = (unsigned long *) (NewPtr (STACKBYTES));

/* copy the environment */
AUXDispatch(AUX_GET_ENVIRON,(char *)&auxenviron);

if((pid = AUXFork(&childstack[STACKSIZE],&fake)) == 0) {
(void) AUXExecl("/bin/sh", "sh", "-c", s, 0);
(void) AUX_exit(127);

}
else {

if (pid < 0) {
DisposPtr((char *)childstack); /* Fork failed */
return(-1);

}
else {

w = auxwait(&status);
DisposPtr((char *)childstack);
return((w == -1)? w: status);

}
}

}

In the above example, the parent sets up the space for the child stack, gets a pointer to the
environment to be passed to exec(), and calls AUXFork(). A dummy variable 'fake' is
passed as a parameter to system() to enable AUXFork() to copy the current stack frame
on to the child stack. After the child exits, the parent cleans up the space allocated to the
child stack. AUXWait() is used to block the parent until the child exits or terminates. The
parent has to wait for the child to exit or terminate for this scheme to work properly within
MultiFinder, If the child does not exit or terminate, the Macintosh environment is blocked
and may lose a number of events and signals necessary to maintain its state. Thus use of fork
makes sense only if we are sure that the child exits or terminates without taking too much
time to execute.

The following example shows how to write AUXFork():

; AUXFork.a -- Glue for A/UX fork call
;
; Copyright © 1990-91 Apple Computer, Inc.
; All rights reserved.
;
; This module contains C callable routines to execute A/UX fork
; calls. This function presumes that A/UX is in fact running.
; Certain death will result otherwise.

Developer Technical Support January 1991

Macintosh Technical Notes

INCLUDE 'Traps.a'

CASE OBJECT
EXPORT AUXFork

; AUXFork routine
;
;
; pid = AUXFork(new_top_sp, caller_env)
;
; new_top_sp: This is one past the highest address that is
; in the new stack area.
; caller_env: This is an address on the current stack that is
; one past the highest address in the stack frame
; of the calling routine.
;
; return values -
; in parent: pid == -1 failure
; pid == child success
; in child: pid == 0
;
;
; To call auxfork -
; Allocate memory for the child's stack which is guaranteed not to
; be freed until after the child process has completed its exec. Remember
; to pass the end of that memory region to auxfork, not the beginning. The
; address to be passed as the caller_env argument is computed differently
; depending on whether the calling routine has a pascal or C stack frame.
; Note that the calling routine needs to be very careful about what
; the child does before exec or exit. Only the local frame has been copied
; and only the frame pointer has been fixed up. For example, if the calling
; routine has an array on the stack and uses a pointer to it for efficiency
; then the child's pointer will point at the parent's copy, not the child's.
; Also, if the parent must be careful not to delete or change anything the
; child may be using. Caveat emptor!
;
;
; How to compute the caller_env argument -
;
; Pascal: compute ((char*)&leftmost_argument) + sizeof(leftmost_argument)
; + sizeof(function return value, if any) and pass that.
;
; e.g. pascal Boolean system(short r, long s, long c)
; auxfork(&new_stack[LENGTH_OF_STACK], (&r + sizeof(shor) + sizeof(Boolean)))
;
; C: add a fake rightmost_argument and pass the address of that.
;

; e.g. int system(short r, long s, long c, long fake)
; auxfork(&new_stack[LENGTH_OF_STACK], &fake)
;
;
AUXFork PROC

; make a copy of the stack frame
move.l 4(a7),a0 ; just past end of new stack
move.l 8(a7),d1 ; just past end of caller environment
move.l d1,d0 ; length = end of caller
sub.l a7,d0 ; ... - current stack
sub.l d0,a0 ; new stack -= length of old
move.l a0,d0 ; save the stack base for after copy
move.l a7,a1 ; don't want interrupts to trash stack

Developer Technical Support January 1991

Macintosh Technical Notes

@2 move.w (a1)+,(a0)+ ; word aligned (it is a stack!)
cmp.l a1,d1 ; done?
bhi.s @2 ; ... nah, keep copying
move.l d0,a0 ; ... yep, save new stack pointer

; now, do the fork
move.l 2,D0
trap #0
; D1 == 0 in parent process, D1 == 1 in child process.
; D0 == child pid in parent, D0 == parent pid in child.
bcc.b @0 ; did we fork?
move.l #-1,D0 ; ... nah, failure

@1 rts
@0 tst.b D1 ; who am i now?

beq.b @1 ; ... parent, get out of here

; ... child, so fudge registers
move.l a6,d1 ; offset of fp = fp
sub.l a7,d1 ; ... - old stack
move.l a0,a7 ; set up new stack pointer
move.l a0,a6 ; new frame pointer = sp
add.l d1,a6 ; ... + offset of fp

clr.l (a6) ; the fp points to never-never land
lea do_exit,a1 ; and a guaranteed exit
move.l a1,4(a6) ; becomes the return address

move.l #0,D0 ; the child returns
rts

do_exit move.l 1,D0
trap #0
ENDP

END

Issues with using A/UX system calls in the MultiFinder environment

General :

The following comments describe how various A/UX system calls behave under the
MultiFinder environment:

Blocking / Sleeping system calls :

Many of the system calls can result in situations which cause the calling process to go to
sleep awaiting an event which wakes it up .For instance opening a pipe from process and
writing to the pipe will result in the write waiting until another process opens the pipe for
reading. Such situations should be avoided when using the system calls from within a
Macintosh application.

Depending on the priority at which the sleep occurs, the application can cause the entire
Macintosh environment to hang (when the sleep is non interruptible), or the system call
returns with error number indicating an interrupted system call. This will happen because the
blocked process is sleeping at a priority from which it can be woken up by signals used to

Developer Technical Support January 1991

Macintosh Technical Notes

implement

Developer Technical Support January 1991

Macintosh Technical Notes

VBL's or other Macintosh aspects - and which is almost always bound to happen. One way
to get around this problem is by using options which prevents the blocking and spin in a
loop polling the result from the system call, until we are guaranteed to have a situation
wherein the system call will not block. However, polling in this manner should be done only
for very short intervals, and when we are sure that the polling will end in success in a short
time. If this is not the case, then the application doing the polling will be stuck in the polling
loop without giving up the CPU for other applications (which is extremely unfriendly
MultiFinder behavior).
Caution About Blocking On Read Calls

Be aware that reads from drivers may block the calling application until some data arrives.
Since the complete MultiFinder environment exists as a single process under A/UX, you do
not want a pending read to block for an extended period of time. This problem is not unique
to A/UX—the same thing also happens under the Macintosh OS. In a serial driver, for
example, the application should check to see if any characters have been received and are
waiting to be read before issuing the read call. The read() should then request only that
many characters. This is implemented differently under A/UX than under the Macintosh
OS. The available character count is determined by doing an ioctl() system call to the
device in question. The terminal ioctl() commands to do this are listed in the A/UX
manuals under “termio” in section 7. The FIONREAD ioctl() command returns the
number of characters waiting to be read from the A/UX serial driver. This can cause
problems when using the IOP-based serial driver on the Macintosh IIfx; for more
information on this topic, refer to M.PT.SerialUnderAUX.

sbrk and brk:

There is no consistent way for an application to use sbrk() and brk() properly and
ensure that other applications within the MultiFinder partition are aware of the new sbrk()
and brk() limits and behave appropriately. Thus it doesn't make sense to use these A/UX
system calls. sbrk() and brk() are mostly used to get additional data space, and this can
already be achieved by using either NewPtr()/NewHandle() or malloc().

setuid / setgid / setreuid / setregid / nice/ setgroups / setcompat / setsid / setpgid / plock/
ulimit/ phys:

These A/UX system calls have the same problem as above - i.e. we don't want to modify any
process related A/UX structures/information which in turn affects all the applications
running under the MultiFinder partition.

sethostid / sethostname / setdomainname / sysacct / reboot / powerdown / nfs_getfh /
adjtime:

It is not recommended to affect system wide structures/data with user processes (allowed
only for super user).

Developer Technical Support January 1991

Macintosh Technical Notes

signal / ssig / sigvec / sigblock / sigsetmask / sigpause / sigstack / sigpending / sigcleanup
:

Synchronization with signals and related calls have the same problem as earlier stated, but
with additional complexities. While not providing signals would eliminate the problem of
maintaining signals on a per-application basis within MultiFinder, a subset of the signals
functionality has to be
provided to enable applications to deal properly with certain system calls. Otherwise these
calls may result in the signals being raised to indicate errors or other status information. (e.g
the

Developer Technical Support January 1991

Macintosh Technical Notes

SIGPIPE signal is raised if a process sends data on a broken stream set up via the socket
system call.). Signals necessary to resolve the situations mentioned earlier should be
supported, but all other signals should return without accomplishing anything.

Most of the signal functionality can be accessed via the special AUXDispatch trap.

Pause/ alarm/ kill/ setitimer:

If only a subset of the functionality of signals is going to be provided it does not make much
sense to make use of these calls.

Use of pipes :

Blocking on reading an empty pipe and blocking on writing more than PIPE_MAX bytes of
data should not cause the Mac environment to hang (PIPE_MAX is defined in A/UX to
8192). These situations can be avoided in the following ways:

a) Ensure that all writes greater than PIPE_MAX bytes are broken up into smaller chunks
(this may involve a bit of book-keeping and access to additional buffer space.).

b) Use the fcntl() A/UX system call to set that appropriate file descriptors returned by
pipe() to use the O_NDELAY flags (or the _NONBLOCK semantics provided by POSIX).
This guarantees that both the above cases of blocking are avoided. However, both read()
and write() returns with a count of 0 which is indistinguishable from an end-of-file
indication. This, along with judicious use of the polling strategy to avoid blocking
mentioned above, can be used to prevent a lot of potential blocking situations.

In general use of named pipes is much simpler in a Macintosh application. This because
named pipes gives the programmer the possibility to use standard Macintosh File I/O for
inter-application communication. Use of regular pipes to set up communications between a
parent process and related child/grandchild processes has to be done with great care. The
pipe descriptors have to be set up appropriately for communication, before doing the
exec(), but after the fork(). Improper usage may result in two separate MultiFinder
processes running - which results in very quick deterioration of the system environment.

The requirement of cleaning up the interim child stack used during a fork() imposes the
restriction of the parent (MultiFinder) having to wait for the child to exit. This means that all
communication involving pipes between related processes must not block, and moreover
must complete relatively quickly.

Messages:
Developer Technical Support January 1991

Macintosh Technical Notes

Message operations should ensure that they do not cause the calling process to block. In the
case that they result in blocking, the operations invariably fail and return an error number
specifying an interrupted system call. The caveats mentioned about blocking hold true in
situations where messages could block.

Semaphores:

Developer Technical Support January 1991

Macintosh Technical Notes

Semaphores on AT&T SysV based Unix systems are fairly complicated. With the addition of
further restrictions imposed by the limitations of MultiFinder running under A/UX,
semaphore usage from within a Macintosh application should be attempted with utmost care.
By the very nature of the operation of semaphores, sleeping/blocking situations are bound to
arise. Usage of the

IPC_NOWAIT flag prevents sleeping/blocking. Thus it's possible to implement a conditional
semaphore, whereby the MultiFinder process does not sleep on behalf of the application
using semaphores (when it cannot do the required atomic action).

As with its usage from a regular Unix process, care should be taken to avoid situations
leading to a deadlock or situations where deadlocks could happen. For instance this is true in
the case where one process locks a semaphore and then exits without resetting the
semaphore. Other processes will find the semaphore locked even though the process which
had done the locking is no longer around. To avoid such problems the SEM_UNDO flag
should be used with semaphore operations. Here again the application developer needs to be
aware of the problems associated with blocking which is mentioned above.

Use of lockf:

The lockf() system call can be used if it is done judiciously. Using lockf() with the
mode set to F_TLOCK is recommended; this will return with an error if a lock already exists
for the region of interest to be locked.

Flock :

A request to lock (flock() system call) an object that is already locked will cause the
caller to block until the lock is acquired, unless LOCK_NB (nonblocking lock) is used which
results in nonblocking semantics to be applied.

Networking :

a) accept() : This call will result in the caller blocking until a connection is present if no
pending connections are present on the queue, and the socket in question is not marked as
non-blocking, This situation needs to be avoided.

b) recv()/recvfrom()/recvmsg() : These calls would result in the call blocking
until a message arrives if no messages are available at the socket, unless the socket is
marked nonblocking.

c) select() : Timeout should not be 0 - this would result in blocking indefinitely.

d) send()/sendto()/sendmsg() : These calls will block if no message is available at
Developer Technical Support January 1991

Macintosh Technical Notes

the socket to hold the message to be transmitted, unless the socket has been placed in the
nonblocking mode.

e) socket(): Use of setsockopt() to set options on the socket connection should be
done carefully. Situations which could result in the indefinite blocking should be avoided
(for eg. setting SO_LINGER when the socket is opened in the reliable delivery mode would
result in blocking when the socket is closed, until the socket decides that it is unable to
deliver the information).

Developer Technical Support January 1991

Macintosh Technical Notes

nfssvc / async_daemon:

These system calls cannot be called directly from the Macintosh world because these calls
never return. To use these calls we need to first fork() a new process and then exec() a
program containing this call as the child process. Additional mechanism in the form of a
nonblocking wait for the parent (perhaps wait3()) needs to also be ensured.

ioctl :

The ioctl() A/UX system call is provided to enable programs running on Unix to access
all the peculiarities of specific devices in cases where the standard I/O library lacks the
necessary capabilities. Applications or programs which need to do this require device
specific knowledge relevant to A/UX. The recommended way to use ioctl() is to write a
pure Unix program, a toolbox (hybrid) program, or a small glue code snippet inside the
Macintosh binary application using the ioctl() system call to accomplish A/UX specific
functionality.

Conclusion

The routines presented here show basic techniques for accessing A/UX system services. By
properly using these and other system calls, you can extend your Macintosh device drivers
and applications beyond the limits of the Macintosh OS without having to ship a special
version of your application for A/UX.

Further Reference:
• A/UX Device Drivers Kit, APDA
• A/UX Programmer's Reference, Section 2.
• Writing A Unix Device Driver, Egan & Teixeira, Wiley.

 • The Design of the UNIX Operating System, Bach, Prentice-Hall
• M.TP.SerialUnderAUX

Unix is a registered trademark of UNIX Development Laboratories, Inc.

Developer Technical Support January 1991

